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Abstract

A quadrupole method is developed to solve heat transfer through a periodic macro-contact with time varying
constriction. The solution is based on Fourier developments of time periodic variables. The result shows that it is
necessary to introduce the concept of “building-up” of constriction to explain the thermal behavior for short and
moderate periods. It is demonstrated that three characteristic times govern the problem: contact period, characteristic
time of the rod and “building-up” time of constriction. Simplified schemes of the apparent resistance are presented
corresponding to three limiting states. The analytical approach is validated by a numerical solution. © 2002 Elsevier

Science Ltd. All rights reserved.

1. Introduction

The imperfection of contact surfaces yields a con-
striction of heat flow through the interface. This phe-
nomenon constitutes an important subject of study in
the field of heat transfer across solid surfaces perma-
nently held in contact [1-5]. Nevertheless, very little
work is available in the literature on the investigation of
thermal constriction in periodically contacting regions,
despite the importance of this problem in numerous
practical applications.

Conductive heat transfer through periodically con-
tacting surfaces has been modeled in both theoretical
[6-13] and experimental [14-17] works. They correspond
to the assumption of a uniform contact conductance at
the whole interface, and thus to a one-dimensional heat
flow in contacting regions. However, a time-varying
thermal constriction of the heat flow appears because
the actual contact area is exceedingly small compared
with the apparent contact area in practical cases. It
is thus necessary to consider the influence of constric-
tion on heat transfer through periodically contacting
surfaces.

* Corresponding author. Tel.: +33-03-83-36-83-01; fax: +33-
03-83-36-83-36.
E-mail address: directeur@eeigm.inpl-nancy.fr (A. Degiov-
anni).

The valve-seat periodic contact in an internal combus-
tion engine can be considered as a typical example of its
industrial applications [18]. As it is shown in various
studies, both theoretical and experimental, the main
problem on this topic lies on the dependence of the ap-
parent contact resistance (the time average during a period)
on the period. We will be engaged to analyze theoreti-
cally this dependence in the presence of a macro-con-
striction of heat flux lines and demonstrate the importance
of the “building-up” time of this macro-constriction.

Toward this end, we develop a quadrupole model
[19], which contains a term associated to the thermal
constriction, in order to solve conductive transfer
through a periodic macro-contact. This model is used to
discuss the influence of thermal constriction on the ap-
parent system resistance in a wide range of contact fre-
quency. We analyze moreover the characteristic time of
“building-up” of the constriction in a simple case and its
influence on the apparent resistance of periodic contact.
Consequently, simplified schemes of the apparent system
resistance are obtained for the three limiting states.

The quadrupole model is validated by a finite differ-
ence solution.

2. Mathematical model

We consider a cylindrical rod of length / with a
uniform cross-section of radius R (heat conductivity %,
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Nomenclature

A,B,C,D quadrupole coefficients

a heat diffusivity

h periodic contact conductance at the
interface

Jo,Ji Bessel functions of order 0 and 1

k heat conductivity

/ rod length

p Laplace variable

0 heat flux

q heat flux density

R rod radius

r radial coordinate

0 asperity radius

Fapp apparent system resistance

b thermal resistance of the rod

7e contact resistance

Tet thermal constriction resistance

T temperature

Ty imposed fixed end temperature of the rod

T. imposed contact surface temperature

t time variable

X axial coordinate

Zet constriction impedance

Zy term associated with the thermal

constriction contained in the quadrupole

Greek symbols

Oy nth root of the equation

o(1) Dirac function

{03 Laplace transform of heat flux

o 72— + iy a

0 Laplace transform of temperature

T contact period

T characteristic time of the rod

Tet characteristic time of the
constriction

Wy, no (w is the pulsation)

Subscripts

0 atx =20

0,m,00  three limiting states, corresponding to
short, moderate and long periods,
respectively

1,2 related to phases 1, 2 (contact and
noncontact)

a related to the asperity

/ atx =1/

n related to the nth term of Fourier
development

Superscripts

— average quantity

* dimensionless quantity

heat diffusivity a), which is insulated laterally so that no
heat transfer takes place from the sides. One end (x = 0)
is held at a uniform temperature 7; while the other end
(x =1) is brought into periodic contact (contact-non-
contact) with a plane kept at constant temperature 7.
This contact involves a disk (the asperity) of radius
ro < R (Fig. 1). We assume that: the contact conduc-
tance is time dependent and uniform over the whole

/7

insulated

R
1%
X
0 /
Ty h@ T E T

Fig. 1. Scheme of macro-contact.

asperity (actual contact area); there is no heat transfer
through the remaining area surrounding the asperity;
the thickness of the asperity is neglected; and the peri-
odic condition is established.

The governing heat conduction problem is therefore
defined as

Lo (ory o1 1o "

r or r@r o2 adt’

T=1T, forx=0, (la)
O [ h(t)(T—T.) for0<r<r,

_k§7{0 for ry < r <R, =1, (Ib)

oT

E_O for r =R, (Ic)

where the contact resistance per unit area 1/h(¢) varies
periodically with time in a period t = 7| + 1,. It is equal
to 1/h; during the contact phase t; and to 1/k, during
the noncontact phase 1,.

3. Resolution of the problem by the quadrupole method

The quadrupole method has been used to solve
transient conductive transfer problems using inverse
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transfer matrices that link Laplace transforms of input
and output temperatures and heat fluxes [19-21].

Degiovanni et al. [22] presented an approximate an-
alytical model of thermal constriction in transient state.
Using the average temperatures and fluxes (in the form
of Laplace transform), they gave a quadrupole repre-
sentation of the transient constriction. We extend here
the same approach to periodic macro-contact with
transient constriction.

3.1. Thermal quadrupole related to a constriction

One reviews here in brief the general problem of a
constriction in variable state (Fig. 1)

Lo (ary, or_1ar 2
ror\ or w2 aot’
oT [ q(r,t) for 0 <r<r, _

7a_{0 for ro < r <R, x=1, (2a)
or

E:O for r =R, (2b)
any condition independent of r for x = 0, (2¢)
T=0 att=0. (2d)

Use of the Laplace transform with the initial condition
(2d) leads to

10/ 00\ &0 p

m(’a%@*a‘* ®)
00 [ o(r,p) for0<r< r, -

_ka*{o for ry < r <R, x=1 (3a)

00

5:0 for r =R. (3b)

When / > R, which is always the case in practice, the
quadrupole associated with problem (3), is independent
of the boundary condition in x = 0, i.e.

éO 4 B é’l
= - 4
)= 1e Bl ®
where 0, denotes the Laplace transform of the average
temperature over the surface at x =0, and 6, the av-
erage temperature over the asperity area 0 < r < ry at

x=1; &y and @, are the Laplace heat fluxes at x =0
and x = [.

3.2. Quadrupoles in established periodic state

Assuming that periodic state is established, the tem-
perature and the flux density varying periodically with
time can be developed in Fourier series

n=+00

T(x,rt) = Z [T,,(x, r)ei‘”"t]7 (5a)

n=—o00

n=+o0

> [antx,r)e ], (5b)

n=-—00

q(x,r.t) =

where w, = nw = 2nn/7.From problem (2), to be solved,
we have then the following equation in T7,:

10/ 0orT, PT,  iw,

ror (r or ) w2 a L, (©6)
T, [ qu(r) for0<r<r, _

_kax_{o for ry < r <R, x=1 (6a)

or, B

o 0 forr=R. (6b)

Comparing system (6) with Eq. (3), it is obvious that
the solution of (6) can be put in quadrupole form as
below:

T A, B T,
n — n n an , 7
|:Q0,n :| |: Cn Dn :| |: Qa.n :l ( )
where Ty, T, Qo and Q,, denote, respectively, the nth
terms of Fourier developments of the average tempera-

tures and the total flux over the whole surface at x =0
and the asperity area 0 < r < ry at x = /, that is to say

_ 2 [k
TO:ﬁ/ T;:ord}ﬁ
0

_ 2 [
T,==

2
s Jo

K or
Q0:2n/ <—k—) rdr,
0 ox )
ro
Qa:Zn/ <fka—T) rdr.
0 @x =1

Substituting p by iw, in the expression (4), the quadru-
pole is written as

4, B, _[4, B[l =z,
@ nl-le Bl T g

where the coefficients of the first sub-quadrupole related
to the unperturbed medium are given below:

Al = D, = cosh(v/iw,/al), (9a)
= R’k+\/iw, /asinh(\/iw, /al), (9b)

. sinh (Wl)

B, =———
! TR k\/1w, /a

(forn:o, A =D, =1, C,=0

T rdr,

CVI

(%)

, /
andB():rh:m>,

and the term associated with the constriction of the heat
flux lines
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i 2‘]1 O(mro jgﬂ Vql,, )Jo(oc,,,r)dr (10)
Tkt o Ry, JE (0 R fo rq,(r)dr’

where «, stands for the roots of J;(«R) =0, and
P2 =02 +im,/a.

Notes.

e For the periodic case, the inputs and the outputs of
the transfer matrix are, respectively, the coefficients
of the Fourier developments of the average tempera-
tures and of the total flux over the surface at x =0
and over the asperity area at x = /.

e This model takes into account the “building-up” of
the thermal constriction through the z, term.

e This model makes sense only under the condition
I > R [22], which means that the constriction is estab-
lished axially, i.e. the transfer is one-directional at
x=0.

3.3. Solution for periodic macro-contact

Using the average temperatures, we have obtained an
approximate analytical model for the periodic conduc-
tion with constriction. It presents the same quadrupole
representation as that of one-dimensional conduction.
We follow identical steps, which have been used in one-
dimensional case of periodic contact [23], to solve this
model for the case of periodic macro-contact. In fact,
the only additional difficulty lies in the calculation of the
constriction term z,.

To connect the flux at the interface to the periodic
contact conductance /(¢), boundary condition (1b) is
rewritten using average values over the asperity
O <r<r)

0. = wh(t)(Ty — To). (11)

The periodic contact conductance 4(¢) is developed into
Fourier series as well

= > her. (12)
Then condition (11) becomes

n=+0o0 n=+oo
Z Q elzu,, _ TU'O( Z [hneiu),,l}>

n=+00
x ( 3 [(Tan - Tc‘n>e""~q>. (13)

From this expression and quadrupole equation (7),
coupled equations are easily obtained

m=+00
=g Z nem(Tam = Tem)] (14a)
TO,n = AnTaJl + BnQa.m (14b)

and therefore T,, is the solution of the following equa-
tion:

m=+00 A o T
TCVO Z —m dn1_Z:.nz)]+_nT1n: ;," (15)

The infinite summation is truncated so that only the
terms corresponding to —N <m <N are kept in the
practical calculation.

The following vectors are defined to facilitate the
calculation:

Tl = [Tl,nL Tc = [Tv':,nL
and H = [A,,y].

TO = [TOJJ (16)

Eq. (15) can therefore be written as a matrix equation of
finite size:

(toeplltz(H H') + diag { } )Tl

T
= { 5(')} + toeplitz(H, H)T,, (17)

where diag[4,/B,] is a diagonal matrix and
toeplitz(H, H') is an asymmetrical Toeplitz matrix, the
first row of which is H and the first line H'

hy h e hooy
h h s ho

toeplitz(H,H') = | . Y . . (18)
hoy  havor o0 ho

Matrix solvers of MATLAB type [24] allow a very
simple calculation of this kind of expression.

Appendix A gives the Fourier development of the
contact conductance /(¢) in the studied case of an in-
termittent contact (contact-noncontact). In fact, thanks
to the use of Fourier development of periodic quantities,
the above method is valid for contacts with any periodic
boundary contact condition at the interface.

In order to calculate z,, a usual approximation lies in
assuming a uniform flux density on the actual contact
area of radius ry. Thus expression (10) is reduced to

— c(mr())
= 1
-3 e "

where the zeros (j,,) of Bessel functions are approxi-
mated by [25]

o M1 Au—1)(Tu—31)
S T
32(p — 1)(8342% — 9824 + 3779)
B 15(8)°
64(p — 1)(6949° — 1538552 + 1585743y — 6277237)
- 105(88)

with =4 and B = (m+1v - Hr.
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Fig. 2. Variations of average temperature and total flux during a period (ry/R = 0.10,R// = 0.02). (x) Finite difference; (-) quadru-
pole. (a) t* = 1072%; (b) " = 10°; (c) =* = 10°.

Notes. with

e When the pulsation m, = 2nn/t approaches zero, the Ao = 0.848-1.0932 1 0245 (Q)3'75
constriction term z, becomes the constriction resis- R R
tance in steady state. An approximate formula is (when ro/R — 0, Ay — 8/31 = 0.848).

available [26] e 7z, is a decreasing function of the pulsation.

In the case R >> ry, the constriction term is identical
= Ao (20) to its value obtained for a semi-infinite domain [22],
mkry ie.
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Fig. 3. Variations of average temperature and total flux during a period (/R = 0.80,R/I = 0.02). (x) Finite difference; (-) quadru-
pole. (a) t* = 1072; (b) t* = 10°; (c) v* = 10°.

, 2 > J3(e) 1 d 1) This approximation is obtained by setting in
K T mkr Jo e /& +iosi/a ¢ parallel the constriction resistance, here zj =8/
(3n%kry), with the impedance of a semi-infinite

An approximate formula of this integral is given cylinder of radius r, ie. 1/vkpenrjvio,. We get
27] this approximation from the fact that the formula
8 (21) tends to the impedance of a semi-infinite cyl-

Z =~ . (22) inder of radius 7y while w, tending to infinity. In
3n2kr0<1+% iwnr%/a) fact
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.2 1

/OC Ji(e)
4= de,
wkro \fiw,r3fa Jo £

when w, — oo

and

REACIS
K/O p dS—z

(This result shows that the transfer is uni-directional
for short times.)

e Using the same approach with the formula (19), an
approximation is obtained

Ao

R .
nkro(1 + Aor/iw,r3/a)

(23)

4. Results and discussion

For the macro-contact in periodic state, the apparent
system resistance 7,y 15 defined as

with AT =Ty — T, (24)

g

where T, and Q are time averages of the temperature and
the heat flux going through the system (Q = Q,), re-
spectively.

While presenting the results of the calculation, we
pay a particular attention to the apparent resistance
varying with the contact period in the case of an inter-
mittent contact (h; ~ 0o, hy =~ 0) and 1, = 7,. All the
results are given in dimensionless form. So the following
dimensionless quantities are introduced: space variables

Temperature, Tl
o o
= %

. .

=3
~
T

N=40
R' =2,068

app

0.2

0 0.2 04 0.6 0.8
(@) Time, t /7"

x*=x/l and r* = r/l, time variable +* = ¢/, and tem-
perature 7" = (T —T.)/(Th — T.); period 1" =1/1;
contact conductance #* = hnR’r, and apparent system
resistance Tapp = Tapp /1y, where the thermal resistance of
the rod is 7, = //mRk and its thermal characteristic time
= 1%/a.

4.1. Verification of the quadrupole model

The quadrupole model is based on averaged quanti-
ties for inputs and outputs. Consequently, the obtained
results are the average temperature and the total flux
over the asperity area. In order to validate the model
and the approximations, we compare the results of the
quadrupole method with a numerical solution of the
problem [23,28]. The numerical resolution of system (1),
is performed by the finite difference method of implicit
scheme, where a non-uniform grid is generated in axi-
symmetric coordinates and an alternate direction line
iteration (ADI) is adopted.

Figs. 2 and 3 show the variations of the average
temperature and of the total flux over the asperity
area, T and Q:, during a period obtained by both
methods. The results are presented for different contact
periods in the cases of small and large asperities. They
show a good agreement between the two solutions.
However we observe a harmonic oscillation of the
temperature caused by the imperfection of the Fourier
development for describing a discontinuous function
(Fig. 4).

Fig. 5 shows the variation of the apparent system
resistance with the contact period for the two methods.
Considering the numerical difficulties of both solutions,
the agreement is excellent.

1.2 T T . .
1k 1,00
. 081 1
=
g
Z0.6f 1
(5]
a
]
&
04r 1
N=600
RHW =2,097
021 1
0,0476
0 . L . .
0 0.2 0.4 0.6 0.8 1
(b) Time, t*/‘f<

Fig. 4. Convergence of the solution by the quadrupole method (A} = 20,43 = 0,7* = 10°). (-) Result by the quadrupole method;
(- - -) result of steady states. (a) Harmonic oscillation of the temperature 7} (for small N); (b) Gibbs phenomenon of the temperature 7;*

(for big N).
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8]
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L

—_
[
T

L

Apparent system resistance, r

1 . . . . .
10° 10" 10° 10° 10°

*
Contact period, T

Fig. 5. Comparison of quadrupole result and finite difference
solution (ry/R=0.10,R/! =0.02). (-) Finite difference; (x)
quadrupole.

4.2. Influence of the macro-contact geometry

Degiovanni et al. [22] demonstrated that the quad-
rupole associated with a thermal constriction is valid
under the condition / > R (t* = 1 chosen). Fig. 6 shows
the variation of the apparent resistance of the system
with R//, while maintaining the ry/R ratio constant.
The preceding condition is thus confirmed. Fig. 7 shows
the finite difference solutions of the temperature distri-
bution in the rod at times t/2 and t in the cases
R/1=1.0 and R/I = 4.0. In the case R/! = 4.0, the heat
flux over the surface x = 0 becomes non-uniform (the
flux at » =R is 0), which explains the observed devia-
tion of the quadrupole model from the numerical cal-
culation, the quadrupole model being not valid any
more.

4.3. Comparison with the results of the one-dimensional
model

Fig. 8 presents the apparent resistance of a periodic
macro-contact as a function of the contact period as well
as the same variation for a one-dimensional periodic
contact (a uniform contact conductance over the whole
surface at the interface). The one-dimensional result is
taken as [23]. The uni-directional case corresponds to
the case ryp = R, that is to say the absence of constriction
in the rod. In order to compare these two cases, we have
reduced the apparent resistance of the uni-directional
case to that of the two-directional case for large period
state, which amounts to add the constriction resistance
to the interface resistance:

1

1/h+z (25)

heq =

Apparent system resistance, R:l

0 . . . . . . .
0 0.5 1 1.5 2 2.5 3 3.5 4

Rod radius, R*
Fig. 6. Apparent system resistance versus R* (ro/R = 0.20 and
¢ = 10°). (-) Finite difference; (-) quadrupole.

A good agreement between one-dimensional contact and
macro-contact models is observed for long periods. The
macro-contact curve is characterized by an additional
inflexion when compared with the one-dimensional sit-
uation. This is the consequence of the building-up of a
constriction. We will try to explain this phenomenon by
introducing a characteristic time of the ““building-up” of
the constriction.

Some elements can be given for the comparison of
the two different calculation techniques. For example, in
a case of moderate period (t* = 1), it takes approxi-
mately 30 min for the finite difference program written in
Fortran77 (30 x 15 grid, 60 timesteps per with a relative
precision lower than 0.1%), and 6 min for the quadru-
pole program in Matlab5 (250 terms used in the series)
on a Sun-Ultral/SPARC workstation.

5. “Building-up” of thermal constriction

To define a “characteristic time” of constriction, we
are faced with a simple case of semi-infinite medium

10 /0T T 10T

;a(ra%@—aa’ (29)
or

ke =4 0<r<ry, x=0, (26a)
or

fka:Q r>ry x=0, (26b)

T'=0, x—ooandr— ooand?=0. (26¢)

The analysis is difficult. We present two approaches: the
first uses the notion of ‘“‘time varying resistance’, the
second the notion of “impedance”.
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* ®
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o
[=))
!

o
»~
1

*
X

Fig. 7. Temperature distribution in the rod (z* = 10°). (a) R/l = 1.0, r,/R = 0.2; (b) R/l = 4.0, ry/R = 0.2.

In the first approach, the constriction is characterized
at every time by a time varying resistance [29]

2 [
2 Jo T|,_ordr
Tt =

27
nr3q (27)

In the second approach, the constriction is characterized
in the Laplace space by its impedance [27]

; (28)

&

Zet =

where § and @ are the Laplace transforms of the average
temperature and of the heat flux over 0 <r <, at
x = 0, respectively.

5.1. “Building-up time” of constriction

5.1.1. Variable constriction “resistance” ry
We solve the first problem (26) in pulsed regime, i.e.
replacing ¢ in (26a) by the Dirac distribution 4(¢)

or
—kazé(t), O0<r<r, x=0. (29)
The problem is the limit of the problem defined by:

or
—kg 0, x=0, (30a)
T = %7 r <y,
T:f(l),ﬂ r>ro,} XS H t=0, (30b)
T=0, x> U,

where p denotes an infinitesimal thickness (u — 0).
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. «
Contact period, T

Fig. 8. Comparison of macro-contact with one-dimensional
model. (a) ry// =0.04, R/I =0.20; (b) ry/l =0.002, R/I =
0.020. (-) One-dimensional model; () macro-contact.

The solution of problem (30a) and (30b) by the
method of separations of variables is

T(r,x,t) = X (x,)R(r,1) (31)
with
1 U—x u—i—xﬂ
X(x,t) =——— |erf + erf , 32
w0 =g (5 ) o (5 (2
1 2
X(x,t) =——=¢7a, as u — 0), 32a
(X (x,1) e i —0) (32a)
and
el emate? A0 g for < gy,
Rry=14""" v (33)
2 [ gate” A0k re) (r‘)gi‘)(”) de  for r > r,

where U(F) =J; (}"08)Y0(I"08) — J()(I"()B)Yl (I’()S).
Using Duhamel’s theorem, the solution of the prob-
lem (26) is obtained

T= /Ot X (x,t — E)R(r,t — £)dE (34)

and therefore the temperature for 0 < r» <ry atx =0
4q

 w2k\/nr/a

© ¢ gmac’t Jo(re)Ji (roe)
></0 ( NV dr) U2 de,

0<r<r.

T(r)

(35)

Lastly, the constriction “‘resistance’ varying with time is
obtained from its definition (27)

Zet =
Tk}

09}
0.8
507
506
S05f
g
204r
E
§03}
o
0.2}
0.1}
0 - ‘ 0 5
10 10 10
Time, t*
Fig. 9. Constriction resistance versus time.
I 8 0 J2(roe)
10
rTt =—5 —— erf(v/ate de. 36
T w na Jy ( ) U?(e)e* (36)

Fig. 9 shows the dimensionless constriction resistance,
that is the ratio of the constriction resistance and its
permanent value rys = 8/3n%kry, as a function of the
dimensionless time #* = ¢/(r2/a). It is difficult to define a
“building-up time” of the constriction because the
constriction resistance approaches its permanent value
at a particularly slow pace: 0.90 at = 10; 0.97 at
t* = 100; 0.99 at r* = 1000. Here, we choose a little ar-
bitrarily: 7 &~ 1072/a (corresponding to 7%, = 0.9).

5.1.2. Constriction impedance z
The solution of problem (26) can be found by the use

of the Laplace transformation
] 2
e\/E +pri/a

Fig. 10 shows the amplitude and the phase z.
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10 10° 10 10° 10' 10° 10
Pulsation, ®

Fig. 10. Bode chart of the constriction impedance.
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If we assume that the constriction impedance is es-
tablished as soon as the amplitude of z, = 0.9, we
have

1
— = 60r7 /a.

ct

It is difficult to compare the two results because there is
no direct relation between the time variable and the
Laplace variable. For an order of magnitude, we use

1 .
Ty N —, i€ Tq ~ 6013 /a
ct

that is relatively close to 7 &~ 1077 /a.
These results show that it is difficult to bring out a
characteristic time of the constriction.

5.2. Influence of the constriction building-up on the
apparent resistance

By comparison with the one-dimensional situation,
an additional inflexion is present on the curves of Fig.
11. It is the consequence of the influence of the con-
striction building-up on the thermal field in the rod.
Thus, the system presents three scales associated with
characteristic times: contact time t (supposing that 1,
and 1, are of the same order); characteristic time of
the rod 1, = I?/a; building-up time of the constriction
Tet-

In Fig. 11, two examples are shown for 7, < 713
(characteristic times t. & 10r3/a are reported in Fig.
11): three states can be distinguished for thermal resis-
tance r,pp according to the contact period.

o Large period, T > 1, > 1 The constriction and the
thermal field are quasi-steady. It corresponds to the
situations of contact during phase 7; and noncontact

35 T T T T
3.26

Apparent system resistance

130 |
115

10° 10" 10° 10
Contact period

Fig. 11. Influence of the period on the apparent resistance.
(a) /1 =0.04, R/1 = 0.20; (b) ro/I = 0.002, R/I = 0.020.

during 7,; the solution of the problem is simply the
addition of two steady states.

e Moderate period, 1, > 1 > 1: The contact period is
sufficiently short so that the thermal field in the rod
has no time to evolve except in the constriction zone;
the thermal field in the bar behaves then as in steady
state, only the constriction resistance varies periodi-
cally with time.

o Short period, 1, > 14 > 1: The contact period is so
small that, neither in the rod nor in the constriction
zone, does the thermal field have time to evolve; the
system resistance is then the same as in steady state
with an average resistance at the interface equal to
the inverse of the average conductance (h = (t1hy +
‘Ezhz) / T).

From Figs. 8 and 11, we conclude therefore that in the
domain 7> 1, the one-dimensional and two-dimen-
sional models are identical for an equivalent boundary
condition at the interface. On the contrary, for smaller
periods, it is necessary to take into account the building-
up of thermal constriction.

5.3. Schemes for the three limiting states

On the basis of the preceding analysis, we present
three equivalent schemes of the apparent system resis-
tance corresponding to three limiting states (Fig. 12):

1T T T/ T T/
—o
(@) 5,71, I T, 12 YTy
T T/ 11 T/
)
N TAYAVAVS
(b) T T, 2T/,
11 T/ T
Ty Ter
I ——o
(c) 12 YTy

Fig. 12. Resistance schemes for three limiting states. (a) Large
period state, 7> 1, > 14; (b) moderate period state,
Ty > T 3> Tq; (¢) short period state, t, > 7o > 7.
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e For large period state, we have two steady states,
during the time 7, for the contact and the time 7,
for the noncontact, from which:
AT:(rb+rcl+rcl)Ql ZVIQI for T1,

AT = (ro + 1t +72)0, = 10> for 1,.

Calling on Q the flux average for the period, we
have

AT = ryp,Q  with 1y, the apparent resistance

since

_omton Alnu Al'n

T "ot mn T

Qi

and by identification
1

Fapp = —3 o
T/t nt/n

ie. 1/(r17/7)) in parallel with 1/(r27/72) (scheme a of
Fig. 12).

e For moderate period state, the approach is identical
considering the fact that the thermal field in the rod
does not evolve except in the constriction zone, that
is to say

AT:er+(rct+rcl)Ql for Ty,

AT = VbQ+ (rct + cm)QZ for T2,

by identification, we obtain
1

Tapp = T + 1 I
(rectre)t/ti ' (ratra)t/n

(scheme b of Fig. 12).

e For short period state, the approach is identical con-
sidering the fact that neither in the rod nor in the
constriction zone does the thermal field evolve, that
is to say

AT:(rb+rcl)Q+rlel fOI“L'h
AT = (ro + 1) O + 720> for 1,
ie.,
1
Fapp = (rb +rct) +ﬁ
rat/n | rat/n

(scheme ¢ of Fig.12).

In the studied case where 4 ~ oo, h, ~ 0 and 1, = 15,
the resistance networks give directly the apparent system
resistance: large period state, ruppc = 2(r + ret); mod-
erate period state, ruppm = 7 + 27¢; and short period
state, Fappo = 7o + et

Table 1
Results obtained by resistance schemes

* « * x *
"y e rappoc rappm rappO

Curve a 1.00 0.63 3.26 2.26 1.63
Curve b 1.00 0.15 2.30 1.30 1.15

(a): ro/1 = 0.04, R/1 = 0.20; (b): ro/I = 0.002, R/I = 0.020.

Table 1 shows the results of the schemes for two
cases. In the calculation, we have

R? .
Vet = Aonrb with
0

B "o o\ 375
Ao = 0.848 — 1.093% + 0.245(5)

1

and r, 12=—=-
¢ ’IIRZhLz

It is then immediate to verify that the three flats
observed in both curves in Fig. 11 correspond to three
asymptotic values obtained from the resistance schemes.

It should be noted that the quadrupole model and the
preceding analyses remain valid for practical periodic
micro-contact, where practical contact is modeled by a
great number of cylindrical unit cells. The only differ-
ence is that the building-up time of constriction departs
much more from the characteristic time of the rod as
a consequence of an exceedingly small R// value in
practice.

6. Conclusion

A quadrupoles method has been developed to solve
heat transfer through a macro-contact with thermal
constriction, which is periodic in time and two-dimen-
sional in space. The constriction is taken into account by
the means of a constriction term present in the quad-
rupole matrix. The solution of the problem is based on
Fourier developments of time periodic variables. The
analytical approach is validated by a finite difference
solution under the geometric condition that / > R.

The macro-contact study shows that the one-di-
mensional periodic model remains valid for long con-
tact periods, however it is necessary to introduce the
concept of “building-up” of the constriction to explain
the thermal contact behavior for short and moderate
periods. It is demonstrated that three characteristic
times govern the problem: contact period t, charac-
teristic time of the rod 7, and “building-up” time of
constriction 7. In the studied case where 7 < 1,
three different asymptotic states can be observed ac-
cording to the contact period compared with two other
characteristic times. Simplified schemes of the apparent
resistance are presented corresponding to the three
limiting states.
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The “building-up” time at 90% of the constriction
resistance is analytically determined in a simple case:
Tq & 1077 /a.

Appendix A. Fourier development of A(¢) (in the case of
contact-noncontact)

The complex Fourier expansion of an absolutely
integrable function 4(¢) in the [0, 7] domain is defined
by

. . 2
h(t) ~ Zh,,e“""’ with o, = g,

where

T

_ 1 [ .
h,=h, =— / h(t)e™''dt.
0

Therefore the harmonics of the intermittent conduc-
tance

h, 0<t</(x,
h(t) =
h, (1<t<rt,

arc

ho = Chy + (1 = Oha,

hy ="y —hy), n=1,23,...

2nmi
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